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Abstract The problem of coupled heat and mass transfer by mixed convection in a linearly
stratified stagnation flow (Hiemenz flow) in the presence of an externally applied magnetic field
and internal heat generation or absorption effects is formulated. The plate surface is embedded in
a uniform Darcian porous medium and is permeable in order to allow for possible fluid wall
suction or blowing and has a power-law variation of both the wall temperature and concentration.
The resulting governing equations are transformed into similarity equations for the case of
linearly varying wall temperature and concentration with the vertical distance using an appropriate
similarity transformation. These ordinary differential equations are then solved numerically by an
implicit, iterative, finite-difference scheme. Comparisons with previously published work are
performed and excellent agreement between the results is obtained. A parametric study of all
involved parameters is conducted and a representative set of numerical results for the velocity and
temperature profiles as well as the skin-friction parameter, local Nusselt number, and the local
Sherwood number is illustrated graphically to elucidate interesting features of the solutions.

Nomenclature
Bo = Magnetic induction
cp = Specific heat of the fluid
C = Concentration at any point in the

flow field
Cf = Local skin-friction coefficient
C? = Concentration at the free stream

function
Cw = Concentration at the wall
D = Mass diffusivity
f = Dimensionless stream function
g = Gravitational acceleration
G = Mixed convection parameter
h = Local convective heat transfer

coefficient
hm = Local mass transfer coefficient
K = Permeability of the porous medium
ke = Effective thermal conductivity of the

porous medium
Le = Lewis number
N = Buoyancy ratio

M = Square of the Hartmann number
Nux = Local Nusselt number
Pr = Prandtl number
Q = Dimensional internal heat generation

or absorption coefficient
s = Dimensional stratification coefficient
S = Dimensionless stratification

coefficient
Shx = Local Sherwood number
T = Temperature at any point in the flow

field
Tw = Wall temperature
T? = Free stream temperature
U? = Free stream velocity
u = Vertical or x-component of velocity
v = Horizontal or y-component of

velocity
vw = Wall horizontal velocity
Vo = Dimensionless wall mass transfer

coefficient
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Introduction
Stagnation flows are found in many applications such as flows over the tips of
rockets, aircrafts, submarines and oil ships. The study of the stagnation flow
problem was started by Hiemenz (1911) who developed an exact solution to the
Navier-Stokes governing equations for the forced convection case. Later, Eckert
(1942) studied a similar solution for both the momentum and energy governing
equations excluding the effect of buoyancy forces.

Sparrow et al. (1962) have considered the effect of blowing and magnetic
field on the heat transfer characteristics at the stagnation point on a vertical
plate. Recently, Ariel (1994) has considered the stagnation point flow of
electrically-conducting fluids in the presence of larger transverse magnetic field
strengths than those used by Sparrow et al. (1962). Yih (1998) has reported on
the effects of uniform suction/blowing and magnetic field on the heat transfer
characteristics of the Hiemenz problem in porous media.

Simultaneous heat and mass transfer from different geometries embedded in
porous media has many engineering and geophysical applications such as
geothermal reservoirs, drying of porous solids, thermal insulation, enhanced oil
recovery, packed-bed catalytic reactors, cooling of nuclear reactors, and
underground energy transport. Cheng and Minkowycz (1977) have used the
Darcy law in their study on free convection about a vertical impermeable flat
plate in porous media. The problem of a vertical cylinder embedded in porous
media has been investigated by Minkowycz and Cheng (1976) using the local
non-similarity method and by Kumari et al. (1985) using the finite difference
and improved perturbation methods. Some studies which considered coupled
heat and mass transfer include the works of Gebhart and Pera (1971) on vertical
plates, Pera and Gebhart (1972) and Chen and Yuh (1980) on inclined plates.
Also, Lai (1991) has investigated coupled heat and mass transfer by mixed
convection from an isothermal vertical plate in a porous medium and Yih (1997)
has studied the effect of transpiration on the problem of Lai (1991).

There has been a renewed interest in studying magnetohydrodynamic
(MHD) flow and heat transfer in porous and non-porous media due to the effect
of magnetic fields on the performance of many systems using electrically-
conducting fluids. For example, Raptis et al. (1982) have analyzed hydromagnetic
free convection flow through a porous medium between two parallel plates.
Aldoss et al. (1995) have studied mixed convection from a vertical plate

x = Vertical distance along the plate
y = Horizontal distance normal to the

plate

Greek symbols
ae = Effective thermal diffusivity of the

porous medium
bC = Concentration expansion coefficient
bT = Thermal expansion coefficient
d = Dimensionless internal heat

generation or absorption coefficient

f = Dimensionless concentration
Z = Coordinate transformation
l = Power-law index for both

wall temperature and concentration
u = Fluid kinematic viscosity
c = Dimensional stream function
y = Dimensionless temperature
r = Fluid density
s = Fluid electrical conductivity
O = Porous medium parameter
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embedded in a porous medium in the presence of a magnetic field. Chamkha
(1997a) has considered MHD free convection from a vertical plate embedded in
a thermally-stratified porous medium with Hall effects.

In certain porous media applications such as those involving heat removal
from nuclear fuel debris, underground disposal of radioactive waste material,
storage of food stuffs, and exothermic chemical reactions in packed-bed
reactors, the working fluid heat generation (source) or absorption (sink) effects
are important. Representative studies dealing with these effects have been
reported by such authors as Acharya and Goldstein (1985), Vajravelu and
Nayfeh (1992) and Chamkha (1996,1997b).

The objective of this paper is to consider simultaneous heat and mass
transfer of an electrically-conducting fluid by mixed convection in a stagnation
flow over a flat plate embedded in a porous medium in the presence of fluid
wall blowing or suction, magnetic field effects and temperature-dependent heat
generation or absorption effects. This will be done for power-law variations of
both the wall temperature and concentration and a linearly stratified free
stream temperature.

Problem formulation
Consider steady, laminar, hydromagnetic coupled heat and mass transfer by
mixed convection flow in front of a stagnation point on a vertical flat plate
embedded in a porous medium. Both the temperature and concentration of the
surface vary with the distance along the plate according to a power-law model
and they are always greater than their free stream values existing far from the
plate surface. The free stream temperature is assumed to be linearly stratified
while the free stream concentration is assumed to be constant. A magnetic field
of constant strength Bo is applied in the y-direction which is normal to the flow
direction.

A constant fluid suction or blowing is imposed at the plate surface (see
Figure 1). The fluid is assumed to be Newtonian, electrically conducting, heat
generating or absorbing and has constant properties except the density in the
buoyancy term of the balance of linear momentum equation. The magnetic

TW (x)

Porous Medium

CW (x)

VW

g

y

T∞ (x)

U∞

C∞

BO

x
Figure 1.
Physical geometry and
coordinate system
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Reynolds number is assumed to be small so that the induced magnetic field can
be neglected. In addition, there is no applied electric field and all of the Hall
effect, viscous dissipation and Joule heating are neglected. Invoking the
Boussinesq and boundary-layer approximations, the governing equations for
this problem can be written as
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� 0 �1�
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where u, v, T and C are the fluid x-component of velocity, y-component of
velocity, temperature, and concentration, respectively. �; �; cp; �T; and �c are
the fluid density, kinematic viscosity, specific heat at constant pressure,
coefficient of thermal expansion, and coefficient of concentration expansion,
respectively. �, Q and D are the fluid electrical conductivity, heat generation
(> 0) or absorption (< 0) coefficient, and mass diffusivity, respectively. K, g and
Bo are the permeability of the porous medium, gravitational acceleration and
magnetic induction, respectively. ke;U1;T1 and C1 are the porous medium
effective thermal conductivity, and the fluid free stream velocity, temperature
and concentration, respectively.

The above described problem has the following boundary conditions:

u�x; 0� � 0; v�x; 0� � ÿvw; T�x; 0� � Tw; C�x; 0� � Cw

u�x;1� � U1 � Ax; T�x;1� � T1; C�x;1� � C1
�5�

where A is a constant and vw, Tw and Cw are the suction (> 0) or injection (< 0)
velocity and the fluid temperature and concentration at the plate, respectively.
Both the wall temperature and concentration are assumed to have power-law
variation forms while the free stream temperature is linearly stratified with x
as shown by the following equations:

Tw � T1 � c1x�;Cw � C1 � c2x�;T1 � To � sx �6�



HFF
10,1

98

where c1, c2 and To are constants and `̀�'' is the power index of the wall
temperature and concentration. It should be noted that both the wall
temperature and concentration are assumed to have the same power index �.

Defining the stream function 	 such that u � @	=@y and v � ÿ@	=@x
and introducing the similarity variables employed earlier by Yih (1998) gives

� �
�����
A

�e

s
y,	�x; y� � xf���

���������
A�e

p
; ���� � Tÿ T1

Tw ÿ T1
; ���� � Cÿ C1

Cw ÿ C1
�7�

where �e is the effective thermal diffusivity of the porous medium
��e � ke=��cp��. Substituting equations (7) into equations (2) through (4)
produces the following local similarity equations:

Prf 000 � ff 00 ÿ f 02 � 1� �
�M��1ÿ f 0� �G���N�� � 0 �8�

�00 � f �0 ÿ �f 0�� ��ÿ Sf 0 � 0 �9�
1

Le
�00 � f�0 ÿ �f 0� � 0 �10�

where a prime denotes ordinary differentiation with respect to � and

Pr � �

�e
; Le � �e

D
; � � Q

A�cp
; 
 � �e

KA
; M � �B2

o

�A

G � g�T�Tw ÿ T1�
AU1

; N � �c�Cw ÿ C1�
�T�Tw ÿ T1� ; S � T1 ÿ To

Tw ÿ T1

�11�

are the Prandtl number of the fluid, the Lewis number, the dimensionless
internal heat generation or absorption coefficient, the dimensionless porous
medium parameter, the magnetic parameter (square of the Hartmann number),
the mixed convection parameter, the buoyancy ratio and the dimensionless
stratification coefficient. Note that by allowing both the wall temperature and
concentration to have similar power-law indices, N will always be constant. To
eliminate the dependence of G and S on x and, therefore, obtain similarity
equations, �must be equal to unity. Accordingly, for the case of � = 1 where all
of wall temperature and concentration and free stream temperature and
velocity are linearly changing with the vertical distance x along the vertical
plate, the governing equations reduce to

Prf 000 � ff 00 ÿ f 02 � 1� �
�M��1ÿ f 0� �G���N�� � 0 �12�

�00 � f �0 ÿ f 0�� ��ÿ Sf 0 � 0 �13�



Similarity
solutions

99

1

Le
�00 � f�0 ÿ f 0� � 0 �14�

where G � g�Tc1=A
2 and S � s=c1. Equations (12) through (14) are similar

equations.

Upon using equations (7), the dimensionless transformed boundary conditions
become

f 0�0� � 0; f�0� � Vo; ��0� � 1; ��0� � 1

f 0�1� � 1; ��1� � 0; ��1� � 0
�15�

where Vo � vw=�A�e�1=2 is the dimensionless wall normal velocity such that
Vo > 0 indicates suction and Vo < 0 indicates blowing at the surface.

In the absence of mass diffusion (equation (10) is absent), and eliminating the

effects of buoyancy (G = 0), heat generation or absorption (� = 0) and thermal

stratification (S = 0), equations (8), (9) and (15) reduce to

Prf 000 � ff 00 ÿ f 02 � 1� �
�M��1ÿ f 0� � 0 �16�
�00 � f �0 ÿ �f 0� � 0 �17�

f 0�0� � 0; f�0� � Vo; ��0� � 1;

f 0�1� � 1; ��1� � 0
�18�

which are exactly the same as those reported by Yih (1998). In addition, as

!1 and � � 1 in equations (16) and (17), the following equations result

f 0 � 1 �19�

�00 � f�0 ÿ f 0� � 0 �20�

Equations (19) and (20) subject to the boundary conditions (18) represent the

problem of pure Darcy flow solved previously by Lai and Kulacki (1990).
Of special importance for this flow and heat transfer situation are the skin-

friction parameter, local Nusselt number, and the local Sherwood number.

These are defined as follows

SFP � Cf

2

��������
Rex

p
� f 00�0�

������
Pr
p

�21�

Nux � hx

k
� ÿ�0�0�

��������
Pex

p
�22�
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Shx � hmx

D
� ÿ�0�0�

��������
Pex

p
�23�

where Cf ;Rex; h; hm and Pex are the skin friction coefficient at any point near
the stagnation point on the wall, local Reynolds number �Rex � U1x=��, local
convective heat transfer coefficient, the local mass transfer coefficient and the
local Peclet number �Pex � U1x=�e�, respectively.

Numerical method
The implicit finite-difference method discussed by Blottner (1970) is employed
in the present work because of its simplicity and its reliable results especially
for equations and boundary conditions having forms similar to equations (8)
through (15). Equation (12) is a third-order differential equation which is
reduced to a second-order one by letting V � f 0. Then, all second-order
differential equations are linearized and then descritized using three-point
central difference quotients with variable step sizes in the h direction. The
resulting equations form a tridiagonal system of algebraic equations that can
be solved by the well-known Thomas algorithm (see Blottner, 1970). After that,
the first-order equation V � f 0 is then solved for f using the trapezoidal rule.
Owing to the non-linear nature of the equations, an iterative procedure is
employed. For convergence, the maximum absolute error between two
successive iterations was taken to be 10±7. After many numerical
experimentations performed to assess solution grid-size independence, a
starting step size of 0.001 in the � direction with an increase of 1.015 times the
previous step size was found to give accurate results for all the range of
physical parameters. The total number of points in the � direction was taken to
be 499 to ensure proper approach of the solution to the free stream conditions.
Tables I-IV present comparisons between the solutions obtained by the
aforementioned numerical method for special cases of the local-similar
equations and those obtained by different authors as shown below. It is found
that the results of the present work are in excellent agreement with the other
available published results. This lends confidence in the numerical results to be
reported subsequently.

Results and discussion
Figures 2 and 3 present the trend of the velocity and the temperature profiles for
the cases represented in Table V with all of S, M being set to zero and � being
equal to unity. The decrease in the Prandtl number from Pr = 10 to Pr = 1 has
been shown to produce a large increase in the velocity due to both buoyancy
effect and decreased viscosity. These have the direct effect of reducing the
temperature when Pr = 1 as shown from curves I and II in Figures 2 and 3.

Increasing the tightness of the porous medium which is represented by
increases in 
 results in increasing the resistance against the flow. Thus, the
velocity decreases and the temperature increases as shown from curve III
compared to curve I in both Figures 2 and 3. Application of a magnetic field
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Comparison of the
values of SFP for

various values of M
and Vo with G � 0,

Pr � 1, S � 0,

 � 0; � � 0 and � � 0
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produces a resistive force called the Lorentz force which has the same effect as
that of the porous medium parameter 
. For this reason no results will be
shown for various values of the magnetic parameter M which has the physical
range 0 � M � 100. Curve VII shows the effect of the internal heat generation
on both the velocity and temperature profiles. Heat generation increases the
fluid temperature and, consequently, it increases the thermal buoyancy forces
(if present) which, in turn, increases the velocity of the flow.

Including the mass diffusion effects increases the flow velocity and
decreases its temperature due to additional concentration buoyancy forces.
This is obvious from curves IV and V which correspond to different Lewis
numbers compared to curve I in which the concentration buoyancy forces are
eliminated by setting N equal to zero. Surface suction keeps the boundary layer
more attached to the wall and this has an effect of decreasing the temperature
as shown from curve VI compared to curve I in Figure 3.

Figures 4 and 5 present the effect of the Prandtl number Pr and the porous
medium parameter 
 on the local skin-friction coefficient SFP/Pr1/2 and the
Nusselt number as a function of the flow Reynolds number (NuxRex

±1/2) instead
of its Peclet number, respectively.

� � 0 � � 1

Pr

Sparrow
et al.
(1962)

Evans
(1962)

Lin
and Lin
(1987)

Yih
(1998)

Present
work

Yih
(1998)

Present
work

0.0001 ± 0.007938 0.007938 0.007938 0.008058 0.012433 0.012506

0.001 ± 0.024829 0.024829 0.024829 0.025203 0.038658 0.038885

0.01 0.07596 0.075972 0.075973 0.075973 0.077091 0.116372 0.117049

0.1 0.2194 0.219503 0.219505 0.219503 0.222560 0.324927 0.326747

1 0.5705 0.570466 0.570466 0.570465 0.577689 0.811301 0.815499

10 1.349 1.33880 1.33880 1.338796 1.354430 1.861577 1.870514

100 ± 2.98633 2.98634 2.986329 3.019810 4.115021 4.134014

1,000 ± 6.52914 6.52914 6.529137 6.601049 8.963783 9.004434

1,0000 ± 14.158 14.1583 14.158301 14.313023 19.408995 19.494321

Table II.
Comparison of the
values of NuxReÿ1=2

x
for various values of
Pr and � with G � 0,
M � 0, S � 0, Vo � 0,

 � 0 and � � 0

Vo Lai and Kulacki (1990) Yih (1998) Present work

±1 0.7766 0.776625 0.778149

±0.5 0.9909 0.990908 0.992572

0 1.2533 1.253298 1.254966

0.5 1.5599 1.559856 1.561175

1 1.9043 1.904254 1.905056

Table III.
Comparison of the
values of NuxPeÿ1=2

x
for various values of
Vo with G � 0, M � 0,
Pr � 1, S � 0, � � 1,

 � 1010 and � � 0
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� � 0 � � 1

 Yih (1998) Present work Yih (1998) Present work

0 0.570465 0.570465 0.811301 0.815499

10±4 0.570468 0.572804 0.811307 0.812658

10±3 0.570497 0.572833 0.811355 0.812706

10±2 0.570782 0.573120 0.811833 0.813185

10±1 0.573556 0.575904 0.816490 0.817842

1 0.595346 0.597787 0.853324 0.854695

10 0.668343 0.671200 0.981856 0.983427

102 0.742746 0.746169 1.127734 1.129389

103 0.778644 0.782388 1.207239 1.209454

104 0.791608 0.795471 1.237983 1.240297

105 0.795880 0.799768 1.248385 1.250696

106 0.797249 0.801099 1.251747 1.253948

107 0.797683 0.801437 1.252818 1.254775

108 0.797821 0.801490 1.253157 1.254904

109 0.797864 0.801495 1.253264 1.254918

1 0.797885 0.801496 1.253298 1.254966

Table IV.
Comparison of the

values of NuxPeÿ1=2
x

for various values of 

and � with G � 0,

M � 0, Pr � 1, S � 0,
Vo � 0 and � � 0

Figure 2.
A parametric study for

velocity profiles
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Increases in the values of Pr result in decreases in the flow temperature and its
absolute slope at the wall. This results in enhancements in the values of the
local Nusselt number as shown in Figure 5. In Figure 4, the skin-friction
parameter is presented in the same way as done by Yih (1998). This Figure
shows that SFP/Pr1/2 decreases with increasing values of Pr. Also, while the
values of SFP/Pr1/2 change considerably as Pr changes from 0.01 and 0.7, they
do not vary as much for higher values of (Pr = 6.7 and Pr = 10). It is worth
noting that when SFP and NuxPex

±1/2 are plotted instead of SFP/Pr1/2 and
NuxPex

±1/2, the effect of Pr on the skin-friction parameter is observed to be
appreciable only for large values of 
 and the local Nusselt number as a
function of the flow Peclet number becomes independent of the Prandtl number
as 
!1 and approaches a constant value of 1.254966.

Figure 3.
A parametric study for
temperature profiles

Curve Pr 
 G N Vo Le �

I 1 0.0001 10 0 0 0.5 0

II 10 0.0001 10 0 0 0.5 0

III 1 10 10 0 0 0.5 0

IV 1 0.0001 10 10 0 0.5 0

V 1 0.0001 10 10 0 1.25 0

VI 1 0.0001 10 0 0.5 0.5 0

VII 1 0.0001 10 0 0 0.5 0.5

Table V.
Parametric values for
the curves in Figures 1
and 2 (M = 0, S = 0
and 1 = 1)



Similarity
solutions

105

Figures 6 and 7 show the effect of the stratification coefficient S and the
dimensionless porous medium parameter 
 on the skin-friction parameter and
the local Nusselt number, respectively. The value of S = ±1 results in no heat
transfer since it requires that the wall temperature equals to the free stream
temperature at any distance from the stagnation point.

Figure 4.
Effects of Pr and 
 on

the skin-friction
parameter

Figure 5.
Effects of Pr and 
 on

the local Nusselt number
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As expected, in the absence of the buoyancy effects (G = 0), the increase in S
has no effects on the skin-friction parameter. However, it enhances the wall
heat transfer because of the expected increase in the wall and the free stream
temperature gradients along the x-direction which causes increases in the
convective heat transfer as shown in Figures 6 and 7, respectively.

Figure 6.
Effects of S and 
 on the
local skin-friction
parameter

Figure 7.
Effects of S and 
 on the
local Nusselt number
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Figures 8 and 9 depict the effect of the mixed convection parameter G and
the porous medium parameter 
 on the values of SFP and NuxPex

±1/2,
respectively. As G increases, the buoyancy force near the stagnation point
increases. Hence, the flow velocity increases causing increases in the values of

Figure 8.
Effects of G and 
 on

the skin-friction
parameter

Figure 9.
Effects of G and 
 on

the local Nusselt number
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SFP and accordingly, the values of the local Nusselt number increase, as is
evident from Figures 8 and 9, respectively. It should be mentioned that the
effect of the buoyancy force is absent for large values of 
, as is evident from
the previous Figures.

Figures 10 and 11 display the effects of the dimensionless internal heat
generation or absorption coefficient � and 
 on the skin-friction parameter and
the local Nusselt number, respectively. As seen from Figure 3, heat generation
enhances the fluid temperature and its gradient at the wall as well as the wall
slope of the velocity profile. This results in decreasing the values of the local
Nusselt number and increasing the values of SFP as shown in Figures 11 and
10, respectively. The effect of � on SFP is more pronounced for small values of

 than for larger ones as shown in Figure 10.

Figures 12-15 illustrate the effects of the buoyancy ratio N and the Lewis
number Le on the skin-friction parameter and the local Nusselt and Sherwood
numbers, respectively. Again, one can notice from Figure 3 that the absolute
wall temperature slope is increased as a result of increasing N and decreasing
Le. This causes enhancements in the values of the local Nusselt number and
similarly for the local Sherwood number since the energy and concentration
equations have the same form. These behaviours can be seen from Figure 13.
However, increases in the values of Le cause reductions in the values of the
local Nusselt number and increases in the values of the local Sherwood number
as shown in Figures 14 and 15. Also, it is noticed from Figure 2 that the wall
slope of velocity is increased as N is increased. Therefore, the skin-friction
parameter SFP increases as N increases as is shown in Figure 12.

Figure 10.
Effects of � and 
 on the
skin-friction parameter



Similarity
solutions

109

In Figures 16 and 17, the effects of the wall mass transfer coefficient or
dimensionless normal velocity Vo and 
 on the skin-friction parameter and the
local Nusselt number are explained, respectively. Surface fluid injection effects,
when Vo is less than zero, tend to increase the velocity boundary layer. This has

Figure 11.
Effects of � and 
 on the

local Nusselt number

Figure 12.
Effects of N and 
 on

the skin-friction
parameter



HFF
10,1

110

the effect of reducing the fluid linear momentum near the stagnation point.
Accordingly, both the skin-friction parameter and the local Nusselt number
decrease. Conversely, wall fluid suction produces the opposite effect, namely,
increases in both SFP and NuxPex

±1/2. These behaviours are depicted in Figures
16 and 17.

Figure 13.
Effects of N and 
 on
the local Nusselt number

Figure 14.
Effects of Le and 
 on
the local Nusselt number
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Some useful correlations

. The following correlation is obtained for the local Nusselt number as
functions of the Prandtl number, dimensionless porous medium

Figure 15.
Effects of Le and 
 on
the Sherwood number

Figure 16.
Effects of Vo and 
 on

the skin-friction
parameter
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coefficient 
 and the local Reynold with all of G, M, N, S, Vo and � are set
to zero and � equal to unity

Nux � 1:04804Pr0:4403Re0:5
x

1� 1




� �0:04654
�24�

This correlation gives a maximum error of 9 per cent for the range
10ÿ3 < 
 < 102 and 0:01 < Pr < 10: The same can be applied for the
case where the magnetic field is present (M=0). This requires the
replacement of 1/
 by 1/(
 + M) with the range 10ÿ3 < 
�M < 102.

. The following correlation is obtained for the local Nusselt number as
functions of the dimensionless wall mass transfer coefficient, the
dimensionless porous medium coefficient 
 and the local Peclet number
with all of G, M, N, S, and � set to zero and Pr and � are equal to unity

Nux � 0:5184�2�V0�1:1356Pe0:5
x

1� 1




� �0:04828
�25�

This correlation gives a maximum error of 7 per cent for the range
102 < 
 < 105 and ÿ 1:0 < Vo < 1:0.

Figure 17.
Effects of Vo and 
 on
the local Nusselt number
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. The following correlation is obtained for the local Nusselt number as
functions of the dimensionless internal heat generation or absorption
coefficient �, dimensionless porous medium coefficient 
 and the local
Peclet number with all of G, M, N, S, and Vo are set to zero and Pr and �
are equal to unity

Nux � 1:5627Pe0:5
x

�2� ��0:4265 1� 1




� �0:0038289
�26�

This correlation gives a maximum error of 3 per cent for the range
10ÿ4 < 
 < 105 and ÿ 1:0 < � < 1:0:

Conclusion
The problem of steady, laminar, hydromagnetic heat and mass transfer by
mixed convection boundary-layer flow of an electrically-conducting and heat
generating or absorbing fluid near a stagnation point on a vertical permeable
semi-infinite plate embedded in a porous medium with power-law variations in
both the wall temperature and concentration was considered. The free stream
temperature was assumed to be linearly stratified with the vertical distance.
The governing equations were developed and transformed using appropriate
similarity transformations. The resulting local similarity equations were found
to exhibit a self-similar form for a power-law index of unity. The transformed
equations were then solved numerically by an implicit, iterative, finite-
difference scheme. The obtained results for special cases of the problem were
compared with previously published work and were found to be in excellent
agreement. It was found that while the local Nusselt number was increased as
the Prandtl number, mixed convection parameter, buoyancy ratio or the
dimensionless stratification parameter increased. However, it decreased as the
dimensionless internal heat generation coefficient or the Lewis number
increased when the buoyancy forces were present. The skin-friction parameter
was found to increase when both the buoyancy ratio and the dimensionless
wall mass transfer increased. In addition, varying the Prandtl number had no
effects on the local skin-friction parameter at large values of 
 while it was
affected for lower values of 
. The same was observed when the dimensionless
internal heat generation or absorption coefficient was altered. It is hoped that
the present work will serve as a vehicle for understanding more complex
problems involving the various physical effects investigated in the present
problem.
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